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My primary research interests lie in algebraic geometry, commutative algebra, and algebraic combina-
torics. Problems which can be approached computationally are especially interesting as computations suggest
a data-driven approach to theory-building via computing examples (and non-examples). When tackling prob-
lems in geometry and combinatorics, the problems typically involve very concrete data with which allow us
to see what is going on “under the hood,” and then the underlying algebraic structures yield effective means
of proof.

Computing the Castelnuovo-Mumford regularity of toric varieties is an instance where this interplay comes
to life as toric varieties are encoded with rich combinatorial data, but are a special instance of an algebraic-
geometric object. I’m also interested in questions in algebraic combinatorics concerning the undimodality of
sequences, and in a current project, am investigating the combinatorial structure of the stable Tamari poset.
In my project on Lefschetz properties, in certain situations, the geometry of a set of points determined when
their Artinian reduction had the weak Lefschetz property (WLP), but this then generalized to a more general
statement about Betti diagrams and the WLP. For me, it’s this ability to compute examples in very concrete
terms and to then use that to guide more general statements that is paramount to enjoying mathematics.

1 Syzygies and toric varieties

Through the combinatorial lens, a toric variety is associated to a lattice with points in the lattice corre-
sponding to sections of a line bundle. In the smallest case, i.e., that of monomial curves, L’vovsky showed
that reg(I) is bounded by the sum of the two largest gaps of the semigroup of lattice points associated to
I [15], giving a combinatorial interpretation of an algebraic invariant. In work in progress, I explore variants
of this result to toric surfaces by explicitly computing reg(I) for a class of toric surfaces and showing that
reg(I) is bounded by the lattice volume of the associated polygon [8].

The aforementioned class of toric surfaces can be described by the lattice points of the polygon associated
to the toric variety. Given a polygon with integral vertices, we consider the toric variety defined only by the
lattice points on the boundary of the polygon; in particular, all interior lattice points are left out. These
examples lead to highly non-normal toric varieties, but surprisingly in many cases, whose regularity is small.

Using the sheaf-theoretic notion of regularity, the proofs amount to expressing sums of the interior lattice
points as sums of the boundary lattice points. From this setup, the key ingredient is the combinatorics of
the toric variety, so this work leads to the following project:

Project 1.1. Given any toric surface V(I), bound reg(I) using only the combinatorial data of I.

The outcome of this project would not only yield more concrete and computable bounds for the regularity,
but would also shed light into how combinatorial data influences the behavior of I.
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2 Lefschetz properties

In tomography, successive 2D scans of a 3D object are taken and patchworked together to get a picture
of the 3D object. In a similar way, the landmark hard Lefschetz theorem provides a way to understand a
complicated geometric object by slicing it with a hyperplane [13]. More precisely, for a smooth n-dimensional
complex projective variety X, the cup product of the kth power of the cohomology class of a hyperplane
yields an isomorphism between Hn−k(X) and Hn+k(X). A corollary of this is that multiplication by a
generic linear form is injective up to degree n and surjective in higher degrees. This puts restrictions on
the Hilbert function, and has thus been used with much success in the study of Artinian algebras with
applications to geometric and enumerative combinatorics.

A (standard) graded Artinian ring A is a finite-dimensional graded vector space over K, i.e., Ad = 0
for d ≫ 0. Because of this, the Hilbert function of A can be regarded as a finite-dimensional vector, called
the h-vector. Since elements of A vanish in sufficiently high degree, every element is a zero-divisor. When
multiplication by ℓ is full rank in all degrees (i.e., either injective or surjective), we say A has the weak
Lefschetz property (WLP).

Geometry of points

From a set of points X ⊂ Pn and with R = K[x0, . . . , xn], the Artinian reduction AX is obtained by
quotienting R/IX by a generic linear form L; that is, AX = R/(I(X), L). While the geometry of AX seems
to vanish, AX still retains much of the information about X with the advantage of AX now being Artinian.
Motivated by this, joint with Hal Schenck [10], we investigated how the geometry of X influences failure or
success of the WLP on AX , leading to the following theorem:

Theorem 2.1. Let Xf ⊂ Pn (n ≥ 3) be a set of distinct points lying on a hypersurface V(f) for some
polynomial f ∈ R with deg(f) = d, such that (I(Xf ))d = (f) and (I(Xf ))≤d = 0. Choose q ̸∈ V(f) such
that if X = Xf ∪ {q}, then I(X)d = 0 and dimK(I(X)d+1) = n. Then the Artinian reduction AX does not
have the WLP. In particular, if ℓ is a general linear form, then ·ℓ : Ad → Ad+1 does not have full rank.

The essence of this theorem is that if AX is the Artinian reduction of a set of points lying on a unique
hypersurface and one additional point lying off of it, then AX does not have the WLP. Moreover, we can
predict the degree in which the WLP fails as it fails in degree deg(f). The proof relies on the facts that
I(X) = I(Xf ) ∩ I({q}) and that the initial degree of I(X) to explicitly write out the multiplication map
·ℓ : (AX)d → (AX)d+1.

Betti tables

Generalizing the results to Betti tables, since the majority of the points in X lie on a unique hypersurface,
this led to a general pattern in the Betti tables of AX , formalized via the following definition:

Definition 2.2. A Betti table B has an (n, d)-Koszul tail if it has an upper-left principal block of the form

0 1 2 3 . . . n− 2 n− 1 n
0 1 0 0 0 . . . 0 0 0
1 0 0 0 0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

d− 1 0 0 0 0 . . . 0 0 0
d 0 n

(
n
2

) (
n
3

)
. . .

(
n

n−2

)
n 1

.

Note that this is only the top portion of the Betti table, where the dots represent zero-entries. If B has an
(n, d)-Koszul tail and is the Betti table for an Artinian ring K[x1, . . . , xn]/I, then we say B has a maximal
(n, d)-Koszul tail.
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For example, consider the pointset X ⊆ P3 given by the columns of the matrix below and the corre-
sponding Betti table of AX :

X =


1 0 0 1 1 0 1 0
0 1 0 1 0 1 1 0
0 0 1 0 1 1 1 0
0 0 0 0 0 0 0 1

 −→ Betti(AX) =

0 1 2 3
0 1 . . .
1 . 3 3 1
2 . 3 4 1
3 . . 1 1

.

Betti(AX) has a maximal (3, 1)-Koszul tail. Note that AX satisfies the hypotheses of Theorem 2.1, so AX

does not have the WLP and the multiplication map ·ℓ : (AX)1 → (AX)2 is not full rank. The “Koszul-ness”
of the linear strand of Betti(AX) in the initial degree of AX can act as an indicator for the WLP.

Theorem 2.3. An Artinian algebra A = K[x1, . . . , xn]/I whose Betti table has a maximal (n, d)-Koszul tail
does not have the WLP; the map ·ℓ : Ad → Ad+1 is not full rank.

A maximal Koszul tail is not sufficient for the WLP, however. The following example from [1] showcases
two ideals with the same Betti table (which has a (2, 1)-Koszul tail), but where one ideal has the WLP and
the other does not:

0 1 2 3 4
0 1 . . . .
1 . 2 1 . .
2 . 5 9 4 .
3 . 4 9 5 .
4 . . 2 1 .
5 . . . . 1

Ideal Has the WLP

(x2
4, x3x4, x

3
3, x2x

2
3 − x2

2x4, x1x
2
3 − x1x2x4 + x2

2x4, x
2
2x3,

x3
2, x

3
1x4 − x2

1x2x4 + x1x
2
2x4, x

3
1x3, x

3
1x2 − x2

1x
2
2, x

4
1)

True

(x1x4, x
2
1, x3x

2
4, x2x

2
4, x

2
2x4, x1x

2
3,

x1x
2
2 − x2

3x4, x
4
3, x2x

3
3 − x4

4, x
2
2x

2
3, x

4
2)

False

Project 2.4. What are sufficient conditions on the Betti table of A to determine if A has (or does not have)
the WLP? Is the WLP visible purely from the Betti table alone? The Hilbert function is not sufficient to
detect the WLP, as [16] and [18] find examples of level algebras that do not have the WLP.

An interesting special case comes rom Stanley-Reisner theory, where a squarefree monomial ideal I∆
is assigned to a simplicial complex ∆ and then an Artinian reduction A∆ to it. Tools such as Hochster’s
formula can again be leveraged to understand the Betti table of A∆. Combining this with the Koszul tail
result, we can ask the following questions:

Project 2.5. When does the Betti table of R/I∆ have a Koszul tail? More generally, which Stanley-Reisner
ideals have an Artinian reduction with (or without) the WLP?

Constructions

The connected sum of two local Gorenstein rings was introduced by Ananthnarayan-Avramov-Moore [4], and
their connections to Lefschetz properties by Iarrobino-McDaniel-Seceleanu [14]. In work originating from a
workshop on Lefschetz properties in May 2023, we give finer information about these connected sums by
explicitly computing the Betti numbers in terms of the factors in the connected sum, and show that the
connected sum of doublings is itself a doubling [3]. With a description of the Betti numbers, one might
expect that the information from the Betti table contains indicators for if the ring has the WLP, as in the
case of the Koszul tails.

Project 2.6. Find other constructions which preserve the WLP.

In the case of [3], the fiber product and connected sum are formed over the ground field K, so we know
an explicit presentation of these constructions. For instance, with R = K[x1, . . . , xm] and S = K[y1, . . . , yn],
and with A = R/I and B = S/J , the fiber product (over K) is

A×K B ∼=
K[x1, . . . , xm, y1, . . . , yn]

I + J + x ∩ y
,
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where x = (x1, . . . , xm) and y = (y1, . . . , yn). So, in the computation of the Betti numbers, x ∩ y only
contributes in low degree. We leverage this and knowledge of the minimal free resolution of x∩y to compute
the Betti numbers of the fiber product and connected sum. Hence, extending these results to fiber products
and connected sums over more general algebras yields a more complete description of these constructions.

Project 2.7. Compute the Betti numbers of the fiber product and the connected sum over arbitrary algebras
which are compatible with the constructions.

3 The combinatorics of the stable Tamari lattice

Stemming from an AMS MRC on algebraic combinatorics in 2024, I am working with Anna Pun, Herman
Chau, Spencer Daugherty, and J. Carlos Mart́ınez Mori to study and better understand the stable Tamari
lattice and its posets [6]. In particular, given b ∈ Nn, we are interested in the properties of the lower order
ideal of b, denoted b↓, and defined as the set of a ∈ Nn such that a ≤T b, where ≤T is the stable Tamari
order. The stable Tamari lattice was introduced by Haiman through invariant polynomials [12], extended
by Bergeron-Preville-Ratelle [5], and is a variation of the Tamari lattice introduced by Tamari [17]. It is
described as stable since shifting a and b by the all-ones vector 1n = (1, 1, . . . , 1) does not change the poset
relation. As a running example, Figure 1 is the poset for b = (1, 2, 3).

Figure 1: The Hasse diagram for b = (1, 2, 3).

The combinatorics of the stable Tamari lattice
are still largely unexplored. In work in progress and
supported by a large amount of computation, we
have the following conjecture:

Conjecture 3.1. For any n ≥ 1, min
b∈Nn

{|b↓|} =

Cn+1, where Cn+1 is the (n + 1)-st Catalan num-
ber. Moreover, the minimizers of this function are
the elements b ∈ Nn with exactly one peak.

Conjecture 3.1 suggests a strong connection to
parking functions, much-studied objects in the al-
gebraic combinatorics community. As such, estab-
lishing an explicit combinatorial bijection to other
Catalan objects is a natural goal.

To better understand the overall structure of b↓,
we define two generating functions

fb(t) =
∑
a∈b↓

tht(a,b) and Fb(t) =
∑

[p,q]⊆b↓

tht(p,q),

where ht(p,q) is the maximum length of a chain
from p to q in b↓. Continuing with the running
example of b = (1, 2, 3), we get

fb(t) = t6 + t5 + 2t4 + 3t3 + 3t2 + 3t+ 1 and Fb(t) = t6 + 4t5 + 8t4 + 15t3 + 21t2 + 21t+ 14.

Extensive computations support the following conjecture:

Conjecture 3.2. For any b ∈ Nn, the coefficients of fb(t) and Fb(t) are unimodal.

From computation, we have also observed that the coefficients of fb(t) and Fb(t) obey Macaulay’s
condition, so each is the Hilbert function of a Z-graded algebra over a field [11]. With an affirmative answer
to Project 3.3 below, one can hope that the associated Artinian algebras have the WLP, showing that the
coefficients of fb(t) and Fb(t) are unimodal.

Project 3.3. Establish a connection between fb(t) and an Artinian algebra (do the same for Fb(t)). Show
that the Artinian algebra has the WLP.
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4 Other Research

4.1 Discipline-Based Education Research

Joint with Melinda Lanius and Haile Gilroy, we developed the Course Analysis Alignment Tool (CAAT) to
mathematically analyze the alignment of course objectives in classes [7]. Given a list of learning objectives,
the CAAT has the instructor rank which objectives should be emphasized the most (ties are allowed), and
then has them count how many times each objective appeared in an assignment, thus generating an observed
ranking of objectives. The discrepancy or distance in these rankings is calculated and used to quantify how
well an assignment aligns with the expectations of the instructor: the smaller the distance, the better the
alignment (see Figure 2).

Figure 2: The distribution of distances on n = 7 learn-
ing objectives.

Alignment summaries are generated based on the
quartiles of the distribution of distances. The first
quartile (green) indicates an “Excellent” alignment,
the second (yellow) an “Acceptable” score, and the
last two (red) a “Poor” alignment. Using quartiles
ensures that each rating category has an equal prob-
ability of being used with good ratings of “Excel-
lent” and “Acceptable” accounting for half of the
possible scores and “Poor” the other half.

When analyzing the impact of the CAAT on
the perception of uniform homework, we found that
the CAAT affected participants’ definitions of home-
work quality. Especially with novice instructors, the
CAAT shows promise as a professional development
tool as it quantifies the alignment between proposed
versus assessed learning objectives.

4.2 Contributions to Software

Much of my research is based on computations using software such as Python and Macaulay2. Through a
data-driven approach, I compute many examples to help formulate conjectures and build evidence in tackling
a research question. For instance, when approaching the WLP project with Koszul tails, generating many
examples of Betti tables is what allowed us to really nail down that (1) the Koszul tail was a key ingredient,
and (2) that maximal Koszul tails were the crux of the matter.

In my study of the regularity of toric varieties, I wrote code providing support for simplicial complexes,
operations on them, and Hochster’s formula, which included computing the rank of homology groups of
a simplicial complex induced by a multigrading. I also wrote code for computations in topological data
analysis (TDA), crucial for examining observed statistical phenomena and improved visualizations of the
barcode/persistence diagrams.

At the Macaulay2 workshop in Minneapolis in June 2023, I worked with a team on developing the
MatrixSchubert package for Macaulay2 [2]. It features methods for constructing and analyzing matrix
Schubert varieties; these include specialized methods to compute the regularity of a quotient formed by a
Schubert determinantal (or alternating sign matrix) ideal, reduced pipe dreams associated to a permutation,
and more. This package has been incorporated into version 1.23 of Macaulay2.

Realizing a need for a standard Permutation class in Macaulay2, I have also independently developed
the Permutations package to implement permutations and provide methods for them [9]. For example, this
package allows users to use permutations to act on matrices, compute fundamental invariants such as the
cycle type or the inversion set, and so on. This package will be included in version 1.24.11 of Macaulay2.
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