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Let’s start with some preliminary notions.

Definition 1. Let S be a set (sometimes called an alphabet) and call the elements of S
letters. A word is any finite concatenation of letters from S.

Example 1. Suppose S = {a, b, c}. Then a, b, c are letters from S and acb is a word.

For simplicity of notation, for any letter s, we can let denote ss = s2 and so on. Thus
the word accbbbcca is the same as the word ac2b3c2a. It is important to note that the
concatenation operation may not be commutative, i.e. the order of letters in a word is very
important.

Definition 2. The discrete Heisenberg group H(Z) is the group of unipotent upper-triangular
matrices with integer entries under matrix multiplication, i.e. matrices of the form1 x z

0 1 y
0 0 1

 where x, y, z ∈ Z.

1 Working in the Heisenberg Group

Matrices can be complicated so identifying a matrix group with something that is easier to
understand is good. This can be accomplished via an isomorphism.

Note. Let

x =

1 1 0
0 1 0
0 0 1

 , y =

1 0 0
0 1 1
0 0 1

 , z =

1 0 1
0 1 0
0 0 1

 .

Then

H(Z) =
{
x, y : z = xyx−1y−1, xz = zx, yz = zy

}
= {x, y : xy = yxz, xz = zx, yz = zy} .

Because of the last presentation, this is why H(Z) is the nicest noncommutative group one
could ask for.
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Definition 3. Let G,H be groups. A group homomorphism is a function ϕ : G → H s.t.
ϕ is well-defined and ϕ(xy) = ϕ(x)ϕ(y). Basically, it is a function between groups which
respects group multiplication. A group isomorphism is a bijective group homomorphism.
This is useful since it allows us to work with “the same” group, but under a different lens.

Theorem. There is a bijection given by1 x z
0 1 y
0 0 1

←→ (x, y, z).

This can be extended to an isomorphism on H(Z) computed as1 x z
0 1 y
0 0 1

1 x′ z′

0 1 y′

0 0 1

 =

1 x + x′ z + z′ + xy′

0 1 y + y′

0 0 1


xy

(x, y, z)(x′, y′, z′) = (x + x′, y + y′, z + z′ + xy′).

Through this isomorphism, we can see that H(Z) is basically integral vectors under addition,
except there is a twist in the last component. This twist yields the noncommutative nature
of H(Z). Moreover, this isomorphism allows us to visualize elements and subsets of H(Z) as
points in Z3 ⊂ R3.

1.1 Translating Words to Groups

Suppose we have a set S that takes its letters from some group G. We can form words from
S and send them to group elements of G naturally: If w is a word, i.e. a product of letters
from S, our evaluation map simply multiplies the letters together via the group operation.
For example, in the context of H(Z), the word xy2zy is reduced to

xy2zy = (1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1)(0, 1, 0)

= (1, 1, 1)(0, 1, 0)(0, 0, 1)(0, 1, 0)

= (1, 2, 2)(0, 0, 1)(0, 1, 0)

= (1, 2, 3)(0, 1, 0)

= (1, 3, 4).

So for any word formed from letters of S, there is a corresponding element in H(Z) given by
multiplying the letters according to the group operation.
We are also going to impose some additional constraints when looking at these words to
make them easier to study. In particulay, we are going to restrict words based on their word
length, or the number of letters in a word. For instance, the word x2zy has a word length
of 4 since there are 4 letters in it. In doing so, we are now able to iteratively examine what
happens to the number of group elements we get from words of length k. In general, one
would expect that as k gets larger, the possible group elements one might get also increases.



2 Minkowski Dilates

Let S be a finite set with letters taken from H(Z). Define Pk(S) ⊂ H(Z) to be the set of
all group elements obtained from evaluating all of the words of length k formed from S. We
are going to call Pk(S) the k-th dilate of S. More formally, we can realize Pk(S) as

Pk(S) =

{
k∏

i=1

: si ∈ S

}
.

Because our group operation is noncommutative, we must make sure to evaluate all possible
orderings of letters that form words of length k. Thus if |S| = n, to compute Pk(S), we
must evaluate all nk possible words. This becomes a very expensive operation very quickly.
Compare this to the commutative setting where we would only need to evaluate

(
n+k−1

k

)
≤ nk.

Example 2. Let S = {x, y, z, 0}. Then for k = 1, we simply get

P1(S) = {x, y, z, 0} .

For k = 2, P2(S) is the set of all words formed from S of length 2. So

P2(S) =


0

0
0

 ,

1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

2
0
0

 ,

0
2
0

 ,

0
0
2

 ,

1
1
0

 ,

0
1
1

 ,

1
1
1

 .

Note that since H(Z) is not commutative, we must evaluate 4k words for the kth dilate
versus

(
4+k−1

k

)
in the commutative setting. For instance, when computing P10(S), this is the

difference between 410 = 1048576 and
(
4+10−1

10

)
= 286 (see Figure 1). However, |P10(S)| = 781

which is much smaller than 1048576 indicating that H(Z) is a relatively nice noncommutative
group (see Figure 2).

Now we get to the essence of what we want to inverstigate. Our goal is to show that given any
basis with n elements, |Pk(S)| = O(n4) for k sufficiently large, i.e. the asymptotic growth
of the Heisenberg group is quartic. If we can do this, it might be possible to accomplish an
ancillary objective: prove that the number of points in Pk(S) can be counted by a polynomial
of degree 4 or less.
This second objective has already been accomplished in the commutative setting through
Ehrhart theory and Ehrhart polynomials. In fact, some of the coefficients in the Ehrhart
polynomial of a polytope can actually be interpreted meaningfully. For example, the leading
coefficient relates to the d-dimensional volume of the polytope and the constant term relates
to the Euler characteristic. Extending these methods and their corresponding interpretations
to the noncommutative setting is invaluable.



Figure 1: The number of computations needed in the commutative and Heisenberg group
settings. The difference in evaluations becomes staggering very quickly.

Figure 2: The actual number of computations (points) needed in the commutative and
Heisenberg group settings. The difference is not very large compared to the worst case
scenario, i.e. Figure 1.

3 Some Results

Example 3. Recall the basis set as given in Example 2: S = {x, y, z, 0}. A remarkable fact
is that we can actually find a degree 4 polynomial that bounds the polytope Pk(S) from



above as well as |Pk(S)|. Through some work, this polynomial is given by

z = xy − x− y + k.

Integrating under this surface yields the volume of Pk(S):

V (k) =

∫ k

0

∫ k−x

0

xy − x− y + k dy dx

=

∫ k

0

∫ k−x

0

xy dy dx +

∫ k

0

∫ k−x

0

k − x− y dy dx

=

∫ k

0

x(k − x)2

2
dx +

∫ k

0

(k − x)2

2
dx

=
1

24
k4 +

1

6
k3

=
k4

4!
+

k3

3!
.

Moreover, this will not be proven here (I do not remember if this is still conjecture), but

|Pk(S)| = 1

24
k4 +

1

4
k3 +

23

24
k2 +

3

4
k + 1.

Example 4. Consider the basis set

S = {0, x, y, yx} .

Experimentally, it seems that for x + y > k,

zroof = Tx+y−k−1 + 2k(x + y)− x2 − xy − y2 − k2

zfloor = Tx+y−k−1

and

|Pk(S)| = 1

6
k4 +

1

6
k3 +

5

6
k2 +

11

6
k + 1.



Figure 3: Using the tetrahedron generators.

Figure 4: Using the vomit square generators.



Figure 5: Using the standard H(Z) generators.

Figure 6: Using the half-octohedron generators.



Figure 7: Using random generators.


