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These notes are heavily borrowed and inspired from Invitation to Nonlinear Algebra by
Michatek and Sturmfels.

1 Motivating Examples

Theorem 1. Let GG be a weighted directed graph on n nodes with adjacency matrix Dg. The
entry of the matrix Dg(n_l) in row ¢ and column j is the length of a shortest (Hamiltonian?)
path from node ¢ to node j in the graph G.

Example 1. A company has n jobs and n workers and wants to assign each job to one and
only one worker. Let z;; be the cost of assigning job 7 to worker j. Naturally, the company
wishes to find the cheapest assignment m € &,,:

min {xlﬂ(l) + Ton2) + - F Tpan) ¢ TE Gn}.

Theorem 2. The minimum from Example 1 is the tropical determinant of the matrix
X = (245). The tropical determinant solves the assignment problem.

2 What is tropical algebra?

Definition 1. The tropical semiring (R, ®,®) (also called the min-plus algebra) is the set
R =R U{oo}, where oo represents plus-infinity, and

r@y:=min(z,y) and z-y:=1x+y.
Remark 1. Infinity is the additive identity and zero is the multiplicative identity, i.e.
r@oo=x and z0O0=ux.
Furthermore, we have

0 ifz>0

r@oo=00 and z®0= ) i
r ifxr<0
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Example 2.
2@5=min{2,5} =2
603=6+3=9
5030204 =min{5+3,2+4} =min{8,6} =6
Theorem 3. e Pascal’s triangle under tropical addition consists of all zeros.

e The binomial theorem holds.
e The Freshman’s Dream holds.

Example 3.

DY =B D2 0ydz oy ey
(z@y)” =@ay oy o@=ay)
= 3min{z,y}
= min {3z, 2z + y,  + 2y, 3y}
= min {3z, 3y}
— 2% @ y®3,

Remark 2. The tropical semiring should remind one of logarithms. Note that for small
positive real numbers, we have log (u - v) = log (u) ®log (v) and log (u 4 v) =~ log (u)®log (v).
Tropical geometry thus pops up when drawing log-log plots in R%, suggesting connections

to statistical models.

Definition 2. A tropical polynomial is a function that is the minimum of finitely many
affine-linear functions. A real number u is said to be a tropical root of a given tropical
polynomial if that minimum is attained at least twice when the affine-linear functions are
evaluated at the argument u.

Example 4. Consider the tropical polynomial given by

trop(f)(u) =u* @10 u*? &3
= min {4u, 1 + 2u, 3}.

Then the roots of trop(f) are u = 1 and u = 2

[\
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min{4x, 1+ 2x, 3}

-1.0 -0.5 0.0 0.5 1.0 15 2.0 2.5 3.0

3 Linear Algebra

Note 1. We can do matrix and vector operations over the tropical semiring. Consider the
case in R?® with vectors v, w € R3:

T .
vw =0 Qw B vy ®wy @ vy ® ws =min{vy + wy, Ve + Wwe, v3 + w3};
v1OQwr v Qwy v Ows v1+wr v+ we v+ ws
.
vw = [ OQwp Va2 Owe V2 Qwz| = [Vt wp vy +wy Vg + w3
v3 O w; V3O wy U3 O ws U3+ wW; U3+ W2 U3+ ws

Example 5. Consider a weighted directed graph G where each directed edge (i,j) has an
associated (non-negative) weight d;;. If (4, j) is not present in G, then we set d;; = co. In this
way, we get the adjacency matrix Dg = (d;;) of G. Note that this need not be symmetric.
We now return to one of our motivating examples from the beginning.

Theorem 4. Let GG be a weighted directed graph on n nodes with adjacency matrix Dg. The
entry of the matrix Dg(”_l) in row ¢ and column j is the length of a shortest (Hamiltonian?)
path from node 7 to node j in the graph G.

Proof. Let dg) denote the minimum length of any path from node i to node j using at most
r edges in GG. Clearly, d,g;) = d;; for any i, j. Since the d;; are non-negative, for any i, j, there
exists a shortest path from ¢ to j that visits each node of G’ at most once. So the length of
a shortest path from 7 to j equals dz(?_l).

We can then see that there is a recursive relationship when finding the length of a shortest
path:

d) =min{d ™ +dyy ¢ k=120,

)
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We may rewrite this as

dD =diVodyedy Y ody @, @dl Y ody,

— r—1 r—1 . r—1
= dg a5 ag)

)

dy;j

It follows from induction on r that dg) equals the entry in row ¢ and column j of DZ’ since
the RHS is the tropical product of row 7 in Dg(rfl) and column j in Dg. Applying this to
r=n—1, we get that dgfl) is the entry in row ¢ and column 5 of Dg(nfl). O

Definition 3. Let X = (z;;) be an n x n matrix with entries in R U {oo}. The tropical
determinant is defined in the expected way:

tropdet(X) = @ Tir(1) © Tor(2) © ... O Tpr(n)-

7T€6n

Returning to our previous example with the company assigning n jobs to exactly n workers,
the tropical determinant solves the assignment problem.

Theorem 5. The tropical determinant solves the assignment problem.

Proof. Let z;; be the cost of assigning job i to worker j and set X = (z;;). The company
wants to minimize the total cost of assigning jobs to workers. Thus we have that such a
minimum is

min {xlﬁ(l) + Zor2) - T Tpgn) ¢ TE 6n} = @ T1r(1) © Tor2) © -« O Tpg(n)
7T€6n

= tropdet(X).
O

Note 2. Although the tropical determinant is at least n! computations, the polynomial-time
Hungarian algorithm computes tropdet(X).



