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These notes are heavily borrowed and inspired from Invitation to Nonlinear Algebra by
Micha lek and Sturmfels.

1 Motivating Examples

Theorem 1. Let G be a weighted directed graph on n nodes with adjacency matrix DG. The
entry of the matrix D

�(n−1)
G in row i and column j is the length of a shortest (Hamiltonian?)

path from node i to node j in the graph G.

Example 1. A company has n jobs and n workers and wants to assign each job to one and
only one worker. Let xij be the cost of assigning job i to worker j. Naturally, the company
wishes to find the cheapest assignment π ∈ Sn:

min
{
x1π(1) + x2π(2) + . . .+ xnπ(n) : π ∈ Sn

}
.

Theorem 2. The minimum from Example 1 is the tropical determinant of the matrix
X = (xij). The tropical determinant solves the assignment problem.

2 What is tropical algebra?

Definition 1. The tropical semiring (R,⊕,�) (also called the min-plus algebra) is the set
R = R ∪ {∞}, where ∞ represents plus-infinity, and

x⊕ y := min (x, y) and x · y := x+ y.

Remark 1. Infinity is the additive identity and zero is the multiplicative identity, i.e.

x⊕∞ = x and x� 0 = x.

Furthermore, we have

x�∞ =∞ and x⊕ 0 =

{
0 if x ≥ 0

x if x < 0
.
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Example 2.

2⊕ 5 = min {2, 5} = 2

6� 3 = 6 + 3 = 9

5� 3⊕ 2� 4 = min {5 + 3, 2 + 4} = min {8, 6} = 6

Theorem 3. � Pascal’s triangle under tropical addition consists of all zeros.

� The binomial theorem holds.

� The Freshman’s Dream holds.

Example 3.

(x⊕ y)�3 = x�3 ⊕ x�2 � y ⊕ x� y�2 ⊕ y�3

(x⊕ y)�3 = (x⊕ y)� (x⊕ y)� (x⊕ y)

= 3 min {x, y}
= min {3x, 2x+ y, x+ 2y, 3y}
= min {3x, 3y}
= x�3 ⊕ y�3.

Remark 2. The tropical semiring should remind one of logarithms. Note that for small
positive real numbers, we have log (u · v) = log (u)�log (v) and log (u+ v) ≈ log (u)⊕log (v).
Tropical geometry thus pops up when drawing log-log plots in R2

>, suggesting connections
to statistical models.

Definition 2. A tropical polynomial is a function that is the minimum of finitely many
affine-linear functions. A real number u is said to be a tropical root of a given tropical
polynomial if that minimum is attained at least twice when the affine-linear functions are
evaluated at the argument u.

Example 4. Consider the tropical polynomial given by

trop(f)(u) = u�4 ⊕ 1� u�2 ⊕ 3

= min {4u, 1 + 2u, 3}.

Then the roots of trop(f) are u = 1 and u = 1
2
.
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3 Linear Algebra

Note 1. We can do matrix and vector operations over the tropical semiring. Consider the
case in R3 with vectors v, w ∈ R3:

v>w = v1 � w1 ⊕ v2 � w2 ⊕ v3 � w3 = min {v1 + w1, v2 + w2, v3 + w3};

vw> =

v1 � w1 v1 � w2 v1 � w3

v2 � w1 v2 � w2 v2 � w3

v3 � w1 v3 � w2 v3 � w3

 =

v1 + w1 v1 + w2 v1 + w3

v2 + w1 v2 + w2 v2 + w3

v3 + w1 v3 + w2 v3 + w3

 .
Example 5. Consider a weighted directed graph G where each directed edge (i, j) has an
associated (non-negative) weight dij. If (i, j) is not present in G, then we set dij =∞. In this
way, we get the adjacency matrix DG = (dij) of G. Note that this need not be symmetric.
We now return to one of our motivating examples from the beginning.

Theorem 4. Let G be a weighted directed graph on n nodes with adjacency matrix DG. The
entry of the matrix D

�(n−1)
G in row i and column j is the length of a shortest (Hamiltonian?)

path from node i to node j in the graph G.

Proof. Let d
(r)
ij denote the minimum length of any path from node i to node j using at most

r edges in G. Clearly, d
(1)
ij = dij for any i, j. Since the dij are non-negative, for any i, j, there

exists a shortest path from i to j that visits each node of G at most once. So the length of
a shortest path from i to j equals d

(n−1)
ij .

We can then see that there is a recursive relationship when finding the length of a shortest
path:

d
(r)
ij = min

{
d
(r−1)
ik + dkj : k = 1, 2, . . . n

}
.
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We may rewrite this as

d
(r)
ij = d

(r−1)
i1 � d1j ⊕ d(r−1)i2 � d2j ⊕ . . .⊕ d(r−1)in � dnj

=
[
d
(r−1)
i1 d

(r−1)
i2

... d
(r−1)
in

]
d1j
d2j
...
dnj

 .
It follows from induction on r that d

(r)
ij equals the entry in row i and column j of D�rG since

the RHS is the tropical product of row i in D
�(r−1)
G and column j in DG. Applying this to

r = n− 1, we get that d
(n−1)
ij is the entry in row i and column j of D

�(n−1)
G .

Definition 3. Let X = (xij) be an n × n matrix with entries in R ∪ {∞}. The tropical
determinant is defined in the expected way:

tropdet(X) :=
⊕
π∈Sn

x1π(1) � x2π(2) � . . .� xnπ(n).

Returning to our previous example with the company assigning n jobs to exactly n workers,
the tropical determinant solves the assignment problem.

Theorem 5. The tropical determinant solves the assignment problem.

Proof. Let xij be the cost of assigning job i to worker j and set X = (xij). The company
wants to minimize the total cost of assigning jobs to workers. Thus we have that such a
minimum is

min
{
x1π(1) + x2π(2) + . . .+ xnπ(n) : π ∈ Sn

}
=
⊕
π∈Sn

x1π(1) � x2π(2) � . . .� xnπ(n)

= tropdet(X).

Note 2. Although the tropical determinant is at least n! computations, the polynomial-time
Hungarian algorithm computes tropdet(X).


