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1 Introduction

There are basically two different kinds of problems: (1) supervised and (2) unsupervised.

1. Given a labeled dataset {(xi, yi) : xi ∈ Rn, yi ∈ S}, find a function f : Rn → S s.t.
f(xi) ≈ yi.

2. Given a dataset {xi : xi ∈ Rn}, find f s.t. f(xi) preserves certain structures or prop-
erties of f .

Definition 1. If S = Rm, then this is a regression problem. If S = {G1, . . . , Gm}, then this
is a classification problem.

Definition 2. Let {(xi, yi) : xi ∈ Rn, yi ∈ S} be a labeled dataset. The xi are called feature
vectors and their components are called features. The yi are called labels or targets.

We will only consider parametric models. Given a parametric family of functions

F = {fθ : Rn → S : θ ∈ Rp is a vector parameter} ,

our goal is to find parameters θ s.t. fθ(xi) ≈ yi.

2 Loss Functions

How do you measure the a model’s ability to approximate a desired function?

Definition 3. Let {(xi, yi) : xi ∈ Rn, yi ∈ S} be a labeled dataset. A loss function (or cost
function) is a function L : S×S → R that measures the difference between a prediction and
a label.

Example 1. Suppose the label set S is given as S = Rm and {ŷi, yi}ki=1 ⊂ S × S is a
collection of prediction/label pairs. The mean squared error (MSE) or l2 loss is

MSE =
1

k

k∑
i=1

‖ŷi − yi‖22 ,
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where

‖ŷi − yi‖2 =

√√√√ m∑
j=1

∣∣∣ŷ(j)i − y(j)i ∣∣∣2
with (j) indicating the jth component of the vector.

Example 2. Suppose the label set S is given as S = Rm and {ŷi, yi}ki=1 ⊂ S × S is a
collection of prediction/label pairs. The mean absolute error (MAE) or l1 loss is

MAE =
1

k

k∑
i=1

‖ŷi − yi‖1 ,

where

‖ŷi − yi‖1 =
m∑
j=1

∣∣∣ŷ(j)i − y(j)i ∣∣∣
with (j) indicating the jth component of the vector.

Example 3. Suppose S = {G1, . . . , Gm} and (ŷ, y) ∈ S × S is a prediction/label pair.
Assume that ŷ is a probability distribution. The cross entropy loss is

L = −
m∑
j=1

y(j) log ŷ(j)

with (j) indicating the jth component of the vector.

3 Linear Models

Definition 4. The process of training a model is the process of fitting the model to a dataset
and updating the parameters of the model through some optimization procedure.

Example 4. Given a labeled dataset {(xi, yi) : xi ∈ Rn, yi ∈ R}, we can construct a linear
model

y = w>x+ b.

Here, w ∈ Rn is called the weight vector and b ∈ R is called the bias. With this model, define

ŷi = w>xi + b.

The goal is to find w, b s.t. the loss function L is minimized. This is known as linear
regression and can be extended to arbitrary finite dimensions.

Note. Let
ŷ = w>x+ b = w(1)x(1) + . . .+ w(n)x(n) + b

be a linear model. There are limitations to linear models:

1. the model is a linear function in x(i);

2. if two features are linearly related, the components of w may be very large.

This can be accounted for through regularization, e.g. ridge regression or least absolute
shrinkage and selection operator (LASSO).



4 Probabilistic Interpretation

Sometimes it is useful to interpret a model in a probabilistic manner. For example, if
encountering a classification problem, this allows one to interpret a prediction as a confidence
in choosing the correct class. To do this, we need to incorporate a function that rescale our
outputs.

Example 5. The function

σ : R −→ (0, 1) where σ(x) =
1

1 + e−x

is called the logistic sigmoid. This is shown in Figure 1

Figure 1: The logistic sigmoid function σ(x) = 1
1+e−x .

Note. The softmax function will also allow one to interpret a model’s output as a probability
distribution and is computed as

softmax: Rm −→ [0, 1]m where softmax(x)(i) =
ex

(i)∑m
j=1 e

x(j)
.

In this sense, each component of the softmax output is a probability proportional to the
exponentials of the input.

5 Nonlinear Functions

The key to neural networks is the incorporation of nonlinear functions. These allow the neural
network more generalizability and the ability to adapt to any kind of dataset. Nonlinear
functions help give neural networks the property that they are universal approximators—
they can approximate any continuous function.



Example 6. The function

tanh: R −→ (−1, 1) where tanh(x) =
ex − e−x

ex + e−x
=
e2x − 1

e2x + 1

is called the hyperbolic tangent. This is shown in Figure 2.

Figure 2: The hyperbolic tangent function tanh(x) = ex−e−x

ex+e−x .

Example 7. The function

ReLU: R −→ R≥0 where ReLU(x) = max(0, x).

is called the rectified linear unit (ReLU). This is shown in Figure 3.

Figure 3: The ReLU function ReLU(x) = max(0, x).

Example 8. The function

softplus : R −→ R>0 where softplus(x) = log(1 + ex).

is called the softplus. This is shown in Figure 4.



Figure 4: The softplus function softplus(x) = log(1 + ex).

6 Neural Networks

We are now ready to define a neural network.

Definition 5. Given nonlinear functions gl and setting h(0) := x ∈ Rn, the function y =
f(x, θ) defined by

h(1) = gn1(W
(1)x+ b(1)) = gn1(w

(1)h(0) + b(1)) ∈ Rn1

h(2) = gn2(W
(2)h(1) + b(2)) ∈ Rn2

...

h(L) = gnL
(W (L)h(L−1) + b(L)) ∈ RnL

y = Wh(L) + b ∈ Rm

is called a feedforward neural network (FNN) or multilayer perceptron (MLP) with L layers.
Here the h(l) ∈ Rnl are called hidden variables (or hidden units), W (l) ∈ Rnl×nl−1 , and
b(l) ∈ Rnl . The depth of the network is L, the number of layers. We call the set of parameters

θ =
{
W (l), b(l)

}L
l=1
∪ {W, b}

defining the network trainable parameters. We also call L and nl hyperparameters. The
nonlinear functions gl are also called activation functions.


