Castelnuovo-Mumford Regularity of Toric Surfaces¶

Sean Grate (Auburn University)¶

AMS Central Sectional

Castelnuovo-Mumford regularity¶

Definition: Let $I \subseteq R = \mathbb{K}[x_0,\dots,x_n]$ be a homogeneous ideal, and consider the minimal free resolution $$0 \leftarrow R/I \leftarrow F_0 \leftarrow \dots \leftarrow F_{n+1} \leftarrow 0$$ of $R/I$, where $F_i \cong \bigoplus_j R(-i-j)^{\beta_{i,j}}$. The Castelnuovo-Mumford regularity (or simply regularity) is $$\text{reg}(R/I) = \max_{i,j} \left\{ j \, \colon \, \beta_{i,j} \neq 0 \right\}.$$

Note: The regularity is the index of the bottom row in the Betti table.

Regularity of monomial curves¶

Theorem [L'vovsky; 1996]: Let $A = (0,a_1,\dots,a_n)$ be a sequence of non-negative integers such that the g.c.d. of the $a_j$'s equals $1$, and let $C$ be the corresponding monomial curve. Then $C$ is $\delta$-regular, where $$\delta = \max_{1 \leq i < j \leq n} \{ (a_i - a_{i-1}) + (a_j - a_{j-1}) \},$$ i.e., $\delta$ is the sum of the two largest gaps in the semigroup generated by $A$.

In [14]:
kk = ZZ/32749

-- twisted cubic
I = monomialCurveIdeal(kk[x_0..x_3], {1,2,3})
print betti res I
print(toString I | " -> reg(I) = " | toString regularity I)

-- sporadic
I = monomialCurveIdeal(kk[x_0..x_3], {3,5,7})
print betti res I
print(toString I | " -> reg(I) = " | toString regularity I)
       0 1 2
total: 1 3 2
    0: 1 . .
    1: . 3 2

ideal(x_2^2-x_1*x_3,x_1*x_2-x_0*x_3,x_1^2-x_0*x_2) -> reg(I) = 2

       0 1 2
total: 1 3 2
    0: 1 . .
    1: . 1 .
    2: . . .
    3: . 2 2

ideal(x_2^2-x_1*x_3,x_1^3*x_2-x_0^2*x_3^2,x_1^4-x_0^2*x_2*x_3) -> reg(I) = 4

Regularity of toric surfaces¶

Now working with lattice points in the plane (and then homogenizing).

hollow_triangle
bad_boy
In [18]:
-- pinched Veronese
A = homogenizeLatticePoints hollowPolygon transpose matrix {{0,0}, {3,0}, {0,3}}
I = latticeIdeal A

print A
print minimalBetti I
| 0 1 2 3 0 2 0 1 0 |
| 0 0 0 0 1 1 2 2 3 |
| 3 2 1 0 2 0 1 0 0 |

       0  1  2  3   4  5  6 7 8
total: 1 17 53 91 108 83 37 9 1
    0: 1  .  .  .   .  .  . . .
    1: . 17 43 36   8  .  . . .
    2: .  . 10 55 100 83 37 9 1
In [22]:
-- bad boy example from Hal
A = transpose matrix {{0,0}, {7,3}, {4,4}, {2,3}}
I = latticeIdeal homogenizeLatticePoints hollowPolygon A

print I
print betti res I   -- regularity = 19
       16 4    5 15
ideal(x  x  - x x  )
       1  2    0 3

       0 1
total: 1 1
    0: 1 .
    1: . .
    2: . .
    3: . .
    4: . .
    5: . .
    6: . .
    7: . .
    8: . .
    9: . .
   10: . .
   11: . .
   12: . .
   13: . .
   14: . .
   15: . .
   16: . .
   17: . .
   18: . .
   19: . 1

Hollow polygons¶

Examples

hollow_triangle
hollow_square
In [23]:
-- hollow triangles of lengths 2, 3, and 4
for k from 2 to 4 do (
    A = homogenizeLatticePoints hollowPolygon transpose matrix {{0,0}, {k,0}, {0,k}};
    print minimalBetti latticeIdeal A;
    print "\n"
)
       0 1 2 3
total: 1 6 8 3
    0: 1 . . .
    1: . 6 8 3


       0  1  2  3   4  5  6 7 8
total: 1 17 53 91 108 83 37 9 1
    0: 1  .  .  .   .  .  . . .
    1: . 17 43 36   8  .  . . .
    2: .  . 10 55 100 83 37 9 1


       0  1   2   3    4    5    6    7   8   9 10 11
total: 1 33 153 525 1356 2178 2205 1486 675 201 36  3
    0: 1  .   .   .    .    .    .    .   .   .  .  .
    1: . 33 123 144   30    .    .    .   .   .  .  .
    2: .  .  30 381 1326 2178 2205 1486 675 201 36  3


In [24]:
-- hollow squares of lengths 2, 3
for k from 2 to 3 do (
    A = homogenizeLatticePoints hollowPolygon transpose matrix {{0,0}, {k,0}, {0,k}, {k,k}};
    print minimalBetti latticeIdeal A;
    print "\n"
)
       0  1  2  3  4  5 6 7
total: 1 11 34 57 55 29 8 1
    0: 1  .  .  .  .  . . .
    1: . 11 17  6  .  . . .
    2: .  . 17 51 55 29 8 1


       0  1   2   3    4    5    6    7   8   9 10 11
total: 1 29 232 942 2176 3154 3045 2008 903 268 48  4
    0: 1  .   .   .    .    .    .    .   .   .  .  .
    1: . 29  84  90   48   10    .    .   .   .  .  .
    2: .  . 148 852 2128 3144 3045 2008 903 268 48  4


Theorem: $\text{reg}(\triangle^k) = 2$ for all $k \geq 3$.

Theorem: $\text{reg}(\square^k) = 2$ for all $k \geq 2$.

Proofs involve representing interior points as $\mathbb{N}$-linear combinations of the boundary points. Taking "enough" points on the boundary should decrease the regularity.

In [26]:
-- Example: smooth is not enough
A = hollowPolygon homogenizeLatticePoints transpose matrix {{0,0}, {0,2}, {2,4}, {8,8}}

print minimalBetti latticeIdeal A;      -- regularity = 3
       0  1   2    3    4    5    6    7    8    9  10  11 12 13
total: 1 54 385 1462 3608 6456 8394 7875 5369 2639 913 212 30  2
    0: 1  .   .    .    .    .    .    .    .    .   .   .  .  .
    1: . 52 280  730 1128 1050  720  315   80    9   .   .  .  .
    2: .  .  81  600 2040 4416 6090 5712 3705 1640 473  80  6  .
    3: .  2  24  132  440  990 1584 1848 1584  990 440 132 24  2
vertex_spans
lattice_moves