Betti tables forcing failure of the weak Lefschetz property

Sean Grate

Auburn University

January 26, 2024

Artinian Algebras

Definition

A \mathbb{K} -algebra A is Artinian if $A_d = 0$ for $d \gg 0$.

Example:
$$A = \mathbb{K}[x, y, z] / < x^2, y^2, z^3 >$$

d	0	1	2	3	4	5
$gens(A_d)$	1	x y z	xy xz yz z ²	xyz x^2z y^2z	xyz ²	Ø
$dim(A_d)$	1	3	4	3	1	0

Example: If $I_{\Delta} \subseteq \mathbb{K}[x_1, \dots, x_n]$ is a Stanley-Reisner ideal, then $I_{\Delta} + \langle x_i^2 | 1 \leq i \leq n \rangle$ is Artinian.

Weak Lefschetz Property (WLP)

If A is Artinian, everything is a zero-divisor, so the best we can hope for is that there is some $f \in A$ such that $\cdot f$ is either injective or surjective in all degrees.

Definition

Let $R = \mathbb{K}[x_1, \dots, x_n]$ and let A = R/I be a standard-graded Artinian \mathbb{K} -algebra, where $I \subseteq R$ is a homogeneous ideal. Then A has the weak Lefschetz property (WLP) if multiplication by a general linear form

$$A_i \xrightarrow{\cdot I} A_{i+1}$$

has full rank for all $i \ge 0$, i.e., it is either injective or surjective.

Who cares?

- Geometric combinatorics
 - g-theorem (formerly McMullen's conjecture)
 - log-concavity of sequences (e.g., f-vectors)
 - top-heavy theorem
- Commutative algebra
 - Fröberg's conjecture

WLP is hard

Theorem (Harbourne, Schenck, Seceleanu)

Let

$$I = \langle L_1^t, \dots, L_n^t \rangle \subset k[x_1, x_2, x_3, x_4]$$

with $L_i \in R_1$ generic. If $n \in \{5, 6, 7, 8\}$, then the WLP fails, respectively, for $t \ge \{3, 27, 140, 704\}$.

Theorem (Li, Zanello)

For any given positive integers a, b, c, the number of plane partitions contained inside an $a \times b \times c$ box is divisible by a prime p if and only if $\mathbb{K}[x,y,z]/\langle x^{a+b},y^{a+c},z^{b+c}\rangle$ fails to have the WLP when $char(\mathbb{K})=p$.

Betti tables

Given an ideal $I \subseteq R = \mathbb{K}[x_1, \dots, x_n]$, a free resolution "approximates" R/I. The betti table records the ranks of the summands appearing in a free resolution.

Example:
$$R = k[x, y, z] \text{ and } I = \langle x^2, y^2, z^3 \rangle$$

$$0 \leftarrow R/I \leftarrow R \leftarrow \frac{R(-2)^2}{\oplus} \leftarrow \frac{R(-4)}{R(-5)^2} \leftarrow R(-7) \leftarrow 0$$

	0	1	2	3
0	1			
		2		
1 2 3		1	1	
3			2	
4				1

Koszul tails

Definition

A Betti table B has an (n, d)-Koszul tail if it has an upper-left principal block of the form

						n - 2		
0	1							
1							•	
:	:	:	:	:	٠	:	:	: '
d-1 d				•			•	
d		n	$\binom{n}{2}$	$\binom{n}{3}$		$\binom{n}{n-2}$	n	1

If B has an (n, d)-Koszul tail and is the Betti table for an Artinian ring $\mathbb{K}[x_1, \dots, x_n]/I$, then we say B has a maximal (n, d)-Koszul tail.

Koszul tails

Example:

	0	1	2	3	4
0	1				
1					
2					
3		3	3	1	
4		44	111	90	20
5					3

(3,3)-Koszul tail

	0	1	2	3
0	1			
1				
2				
3		3	3	1
4		15	27	12

Maximal (3,3)-Koszul tail

Results

Theorem (G., Schenck)

An Artinian algebra $A = \mathbb{K}[x_1, \dots, x_n]/I$ whose Betti table has a maximal (n, d)-Koszul tail does not have the WLP.

Example:

	0	1	2	3
0	1			
1				
2				
3		3	3	1
4		15	27	12

Results

Corollary

If $T = \mathbb{K}[x_1, \dots, x_n]/I$ is Cohen-Macaulay of dimension m, and the Betti table of T has a maximal (n - m, d)-Koszul tail, then the Artinian reduction of T does not have the WLP.

Corollary

If $A = \mathbb{K}[x_1, \dots, x_{m+n}]/I$ is Artinian with an (n, d)-Koszul tail, and there exists a sequence of linearly independent linear forms $\{I_1, \dots, I_m\}$ such that the Betti tables of A and A/I_L have the same top row, then A/I_L does not have the WLP.

Future Work

- Can we do better than a Koszul tail? Having a Koszul tail is very strict.
- Is there a "nice" Boij-Söderberg theory underlying this?
- Characterize the Stanley-Reisner rings whose Artinian reductions have a Koszul tail.