Betti tables forcing failure of the weak Lefschetz property

Sean Grate
Iowa State University
November 11, 2025

The crew

Hal Schenck (Auburn University)

Setup

 \mathbb{K} is a field

$$R = \mathbb{K}[x_0, \ldots, x_n]$$

 $I \subseteq R$ is a homogeneous ideal

A is a standard-graded Artinian \mathbb{K} -algebra

Frequently, A = R/I

Sometimes, A = R/(I, L) where L is a linear form

Example

$$A = \mathbb{K}[x, y, z]/(x^2, y^2, z^3)$$

d	0	1	2	3	4	5
gens	1	x y z	xy xz yz z ²	xyz xz ² yz ²	xyz ²	0
dim	1	3	4	3	1	0

If $I_{\Delta} \subseteq R$ is a Stanley-Reisner ideal, then $I_{\Delta} + (x_i^2 \mid 1 \le i \le n)$ is Artinian.

Lefschetz properties

All elements of A are zero-divisors. So, the best we can hope for is that there exists $f \in R$ such that $\times f$ is either injective or surjective (full rank) in all degrees.

Definition

A=R/I has the weak Lefschetz property (WLP) if $A_d \xrightarrow{\times \ell} A_{d+1}$ is full rank for all $d \geq 0$. If $A_d \xrightarrow{\times \ell^k} A_{d+k}$ is full rank for all $d \geq 0$ and all $k \geq 0$, then A has the strong Lefschetz property (SLP).

"Who the hell cares?"

Theorem (Fröberg, 1985)

Let f_1, \ldots, f_s be generic forms in $R = \mathbb{K}[x_1, \ldots, x_n]$ with degrees d_1, \ldots, d_s , respectively, and set $I = (f_1, \ldots, f_s)$. Then

$$HS_{R/I}(t) = \left[rac{\prod_{i=1}^s (1-t^{d_i})}{(1-t)^n}
ight]$$

Example

Take five quadrics in four variables:

$$\frac{(1-t^2)^5}{(1-t)^4} = 1 + 4t + 5t^2 - 5t^4 - 4t^5 + O(t^6)$$

$$HS_{R/I}(t) = 1 + 4t + 5t^2$$

Geometric combinatorics

Theorem (Billera-Lee, 1981; Stanley, 1985)

A sequence of non-negative integers (f_0, \ldots, f_d) is the f-vector of a simple polytope if and only if

(1)
$$h_i = h_{d-i}$$
 for all $i = 0, \ldots, \lfloor \frac{d}{2} \rfloor$,

(Dehn-Sommerville relations)

(2)
$$g_i \geq 0$$
 for all $i = 0, \ldots, \lfloor \frac{d}{2} \rfloor$,

(upper bound conjecture)

(3) $(g_1, \ldots, g_{\lfloor \frac{d}{2} \rfloor})$ is a Macaulay vector.

Geometric combinatorics

Theorem (Hard Lefschetz Theorem)

For a smooth n-dimensional projective variety X, the cup product of the k-th power of the cohomology class of a hyperplane yields and isomorphism between $H^{n-k}(X)$ and $H^{n+k}(X)$.

Corollary

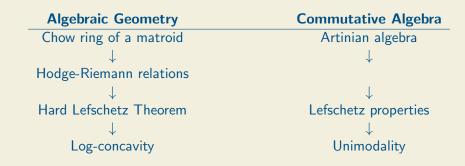
Multiplication by a general linear form is injective up to degree n and surjective in higher degrees.

Geometric combinatorics

Theorem (Braden-Huh-Matherne-Proudfoot-Wang, 2020)

Let M be a matroid with $\mathcal L$ its lattice of flats. For all $k \leq j \leq \operatorname{rank}(M) - k$,

- (1) $\left|\mathcal{L}^{k}(M)\right| \leq \left|\mathcal{L}^{j}(M)\right|$;
- (2) there is an injective map $\iota \colon \mathcal{L}^k \to \mathcal{L}^j$ satisfying $F \leq \iota(F)$ for all $F \in \mathcal{L}^k(M)$.



WLP is hard

Theorem (Brenner-Kaid, 2010)

Let $char(\mathbb{K}) = 2$. Then $A = \mathbb{K}[x, y, z]/(x^d, y^d, z^d)$ has the WLP if and only if $d = \lfloor \frac{2^k+1}{3} \rfloor$ for some k > 0.

Theorem (Harbourne-Schenck-Seceleanu, 2011)

Let $I = (L_1^t, ..., L_n^t) \subset \mathbb{K}[x_1, ..., x_4]$ with $L_i \in R_1$ generic. If $n \in \{5, 6, 7, 8\}$, then WLP fails, respectively, for $t \geq \{3, 27, 140, 704\}$.

Open Problem

Does every complete intersection in four or more variables have the WLP?

Start with geometry

Theorem (Grate-Schenck, 2024)

Let $X_f \subset \mathbb{P}^n$ be a finite set of distinct points on a unique hypersurface $\mathbf{V}(f)$ with $\deg(f) = d$ such that $\mathbf{I}(X_f)_d = (f)$. Choose $q \notin \mathbf{V}(f)$ so that if $X := X_f \cup \{q\}$, then

- (1) $I(X_d) = 0$, and
- (2) $\dim_{\mathbb{K}}(\mathbf{I}(X)_{d+1}) = n$.

Then A_X does not have the WLP. In particular, $A_d \xrightarrow{\times \ell} A_{d+1}$ does not have full rank.

Proof (sketch)

- (1) (not injective)

 - (ii) Get Artinian reduction $A = R/I(X) + (x_0)$
 - (iii) $\ell \cdot f = 0$, so $A_d \xrightarrow{\times \ell} A_{d+1}$ is not injective
- (2) (not surjective)
 - (i) Dimension count

$$\dim_{\mathbb{K}}(A_d) = \binom{n+d-1}{n-1} < \binom{n+d}{n-1} - n \quad (n \ge 3)$$

Betti tables

Given an ideal $I \subset \mathbb{K}[x_1,\ldots,x_n]$, a (minimal) free resolution "approximates" R/I. The Betti table records the ranks of the summands appearing in the free resolution.

Example

$$R = \mathbb{K}[x, y, z]$$
 and $I = \langle x^2, y^2, z^3 \rangle$

$$0 \leftarrow R/I \leftarrow R \xleftarrow{[x^2 \ y^2 \ z^3]} \underset{R(-3)}{\overset{R(-2)^2}{\leftarrow}} \xleftarrow{\frac{\begin{bmatrix} y^2 \ z^3 \ 0 \\ -x^2 \ 0 \ z^3 \end{bmatrix}}{R(-5)^2}} \underset{R(-5)^2}{\overset{R(-4)}{\leftarrow}} \xrightarrow{\frac{[z^3]}{-y^2}} R(-7) \leftarrow 0$$

Example (continued)

Example

$$R = \mathbb{K}[x, y, z]$$
 and $I = \langle x^2, y^2, z^3 \rangle$

$$0 \leftarrow R/I \leftarrow R \leftarrow \frac{R(-(1+1))^2}{\bigoplus\limits_{R(-(1+2))}^{\oplus}} \leftarrow \frac{R(-(2+2))}{\bigoplus\limits_{R(-(2+3))^2}^{\oplus}} \leftarrow R(-(3+4)) \leftarrow 0$$

Betti(
$$R/I$$
) = $egin{array}{c|cccc} & 0 & 1 & 2 & 3 \\ \hline 0 & 1 & . & . & . \\ 1 & . & 2 & . & . \\ 2 & . & 1 & 1 & . \\ 3 & . & . & 2 & . \\ 4 & . & . & . & 1 \\ \hline \end{array}$

Getting back to geometry

Example

$$X = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \subset \mathbb{P}^3$$

$$\mathbf{I}(X) = (x_0x_1, x_0x_2, x_0x_3, x_1^2x_2 - x_1x_2^2, x_1^2x_3 - x_1x_3^2, x_2^2x_3 - x_2x_3^2)$$

Betti(
$$R/I$$
) = $\begin{bmatrix} & 0 & 1 & 2 & 3 \\ \hline 0 & 1 & . & . & . \\ 1 & . & 3 & 3 & 1 & . \\ 2 & . & 3 & 4 & 1 & . \\ 3 & . & . & 1 & 1 & . \end{bmatrix}$

Koszul tails

Definition

A Betti table B has an *(n, d)-Koszul tail* if it has an upper-left principal block of the form

						n-2			
0	1								*
1									*
:	:	:	:	:	٠	:	:	:	* · * *
d-1									*
d		n	$\binom{n}{2}$	$\binom{n}{3}$		$\binom{n}{n-2}$	n	1	*
d+1	*	*	*	*	*	*	*	*	*

If B is has an (n,d)-Koszul tail and is the Betti table for an Artinian ring $\mathbb{K}[x_1,\ldots,x_n]/I$, then we say B has a *maximal* (n,d)-Koszul tail.

(3, 3)-Koszul tail example

Example

Consider $X_f \subset \mathbb{P}^4$ lying on $\mathbf{V}(f)$ with $\deg(f) = 3$ (i.e., 34 points plus 31 extra points). Take five points X_Q lying off of $\mathbf{V}(f)$, but on a codimension 3 linear space. Set $X := X_f \cup X_Q$.

 $A'_{\mathsf{X}} = R/(\mathbf{I}(\mathsf{X}), L, L')$

Maximal (3, 3)-Koszul tail

Getting back to Lefschetz properties

Theorem (Grate-Schenck, 2024)

An Artinian algebra A = R/I whose Betti table has a maximal (n,d)-Koszul tail does not have the WLP; the map $A_d \stackrel{\times \ell}{\longrightarrow} A_{d+1}$ is not full rank.

Corollary

If $T = \mathbb{K}[x_0, \dots, x_n]/I$ is Cohen-Macaulay of dimension m, and T has a maximal (n-m,d)-Koszul tail, then the Artinian reduction of T does not have the WLP.

Corollary

If $A = \mathbb{K}[x_1, \dots, x_{m+n}]/I$ is Artinian with an (n, d)-Koszul tail, and there exists a sequence of linearly independent linear forms $I_L = (I_1, \dots, I_m)$ such that A/I_L has the same top row Betti table as A, then A/I_L does not have the WLP.

Is it all about the socle?

$$X = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \subset \mathbb{P}^3$$

$$I(X) = (x_0x_2, x_1x_2, x_0x_3, x_1x_3, x_0^2x_1 - x_0x_1^2, x_2^2x_3 - x_2x_3^2)$$

$$A = R/(I(X), L)$$
 has the WLP.

Maximal is key

Example (Abdullah-Schenck, 2024)

$$I = (x_4^2, x_3x_4, x_3^3, x_2x_3^2 - x_2^2x_4,$$

$$x_1x_3^2 - x_1x_2x_4 + x_2^2x_4, x_2^2x_3, x_2^3,$$

$$x_1^3x_4 - x_1^2x_2x_4 + x_1x_2^2x_4, x_1^3x_3,$$

$$x_1^3x_2 - x_1^2x_2^2, x_1^4)$$

$$J = (x_1x_4, x_1^2, x_3x_4^2, x_2x_4^2, x_2^2x_4, x_1x_3^2, x_1x_2^2 - x_3^2x_4, x_3^4, x_2x_3^3 - x_4^4, x_2^2x_3^2, x_2^4)$$

	0	1	2	3	4
0	1				
1		2	1		
2		5	9	4	
3		2 5 4	9	5	
4			2	1	
5					1

Has the WLP

Does not have the WLP

Future work

- (1) Can we do better than a Koszul tail?
- (2) Is there a nice "Boij-Söderberg"-theoretic framework for this?
- (3) Characterize Stanley-Reisner rings with $A = I_{\Delta} + \dots$ having (maximal) Koszul tails.

Future work

- (1) Can we do better than a Koszul tail?
- (2) Is there a "nice" underlying Boij-Söderberg framework for this?
- (3) Characterize Stanley-Reisner rings with $A = I_{\Delta} + \dots$ having (maximal) Koszul tails.
- (4) Visit Sweden!